Theory for rates, equilibrium constants, and Brønsted slopes in F1-ATPase single molecule imaging experiments.

نویسندگان

  • Sándor Volkán-Kacsó
  • Rudolph A Marcus
چکیده

A theoretical model of elastically coupled reactions is proposed for single molecule imaging and rotor manipulation experiments on F1-ATPase. Stalling experiments are considered in which rates of individual ligand binding, ligand release, and chemical reaction steps have an exponential dependence on rotor angle. These data are treated in terms of the effect of thermodynamic driving forces on reaction rates, and lead to equations relating rate constants and free energies to the stalling angle. These relations, in turn, are modeled using a formalism originally developed to treat electron and other transfer reactions. During stalling the free energy profile of the enzymatic steps is altered by a work term due to elastic structural twisting. Using biochemical and single molecule data, the dependence of the rate constant and equilibrium constant on the stall angle, as well as the Børnsted slope are predicted and compared with experiment. Reasonable agreement is found with stalling experiments for ATP and GTP binding. The model can be applied to other torque-generating steps of reversible ligand binding, such as ADP and Pi release, when sufficient data become available.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theory of long binding events in single-molecule-controlled rotation experiments on F1-ATPase.

The theory of elastic group transfer for the binding and release rate constants for nucleotides in F1-ATPase as a function of the rotor angle is further extended in several respects. (i) A method is described for predicting the experimentally observed lifetime distribution of long binding events in the controlled rotation experiments by taking into account the hydrolysis and synthesis reactions...

متن کامل

Theory of single-molecule controlled rotation experiments, predictions, tests, and comparison with stalling experiments in F1-ATPase.

A recently proposed chemomechanical group transfer theory of rotary biomolecular motors is applied to treat single-molecule controlled rotation experiments. In these experiments, single-molecule fluorescence is used to measure the binding and release rate constants of nucleotides by monitoring the occupancy of binding sites. It is shown how missed events of nucleotide binding and release in the...

متن کامل

Brønsted slopes based on single-molecule imaging data help to unveil the chemically coupled rotation in F1-ATPase.

F1-ATPase, the rotary motor that powers most of the processes in living cells, has challenged scientists, experimentalists, and theoreticians alike to gain deeper understanding of its action. The work on F1 for more than two decades encompasses elucidation of the complex 3D structure (1) and the analysis of the thermodynamics and kinetics of the chemical steps (2) that led to the revelation of ...

متن کامل

Fluctuation theorem applied to F1-ATPase.

In recent years, theories of nonequilibrium statistical mechanics such as the fluctuation theorem (FT) and the Jarzynski equality have been experimentally applied to micro and nanosized systems. However, so far, these theories are seldom applied to autonomous systems such as motor proteins. In particular, representing the property of entropy production in a small system driven out of equilibriu...

متن کامل

Kinetic analysis of tentoxin binding to chloroplast F1-ATPase. A model for the overactivation process.

The mechanism of action of tentoxin on the soluble part (chloroplast F1 H+-ATPase; CF1) of chloroplast ATP synthase was analyzed in the light of new kinetic and equilibrium experiments. Investigations were done regarding the functional state of the enzyme (activation, bound nucleotide, catalytic turnover). Dialysis and binding data, obtained with 14C-tentoxin, fully confirmed the existence of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 112 46  شماره 

صفحات  -

تاریخ انتشار 2015